Access keys

Skip to content Accessibility Home News, events and publications Site map Search Privacy policy Help Contact us Terms of use

Stem cells know how to open up and unwind

Copyright:Engineering at Cambridge/Flickr at CC2.0
News from: The Babraham Institute

Research led by the Babraham Institute with collaborators in the UK, Canada and Japan has revealed a new understanding of how an open genome structure supports the long-term and unrestricted developmental potential in embryonic stem cells. This insight provides new avenues for improving the quality and stability of embryonic stem cells – an essential requirement to fulfil their promise in regenerative medicine.

How our DNA is stored and packaged in the nucleus can be viewed as two different states: regions of the genome that are ‘open for business’ and can be actively read, and regions that are locked away by being tightly packed and inaccessible to the factors that read DNA.

The researchers looked in detail at the mysterious tightly packed portions of the genome, called constitutive heterochromatin. Previous research has shown that heterochromatin is maintained in an unusually open and uncompacted organisation in embryonic stem cells, which is different to all other cell types. It is thought that this rare form of genome architecture may contribute to keeping stem cells in an unspecialised state, still full of the potential to become any cell type in the body. Why heterochromatin is organised in this way in embryonic stem cells has previously been unknown.  

As described in the journal Genes & Development, the researchers identified a new pathway controlling heterochromatin organisation in mouse embryonic stem cells. Unexpectedly, this pathway assigns new roles for several well-known stem cell factors. The research showed that the stem cell factors, Nanog and Sall1, bind to heterochromatin and help to maintain this portion of the genome in an open form. Embryonic stem cells lacking Nanog and Sall1 showed major defects in heterochromatin organisation, including the closure and compaction of the chromatin. These new findings uncover the first direct connection between stem cell factors and the control of genome architecture, and explains why stem cell heterochromatin is normally in an open and uncompacted form. Loss of heterochromatin regulation has potential consequences for the long-term genetic stability of stem cells, and the ability of stem cells to mature into specialised cell types.

Dr Peter Rugg-Gunn, senior author on the research paper and research group leader at the Babraham Institute explained: “This unanticipated connection between stem cell factors and heterochromatin organisation is important because it tells us about how stem cells work. By tapping into this newly identified connection, we open up new avenues for more successful reprogramming of adult cells to a stem cell state, which is a priority for future regenerative medicine approaches.”

This research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC), who strategically support the Babraham Institute, and grants from BBSRC, Wellcome Trust and European Commission Network of Excellence EpiGeneSys to Dr Peter Rugg-Gunn. As a collaborative project, the work was also supported by the Medical Research Council in the UK and the Canadian Institutes for Health.


Notes for editors

Publication reference: Novo et al. (2016) The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells. Genes and Development 10.1101/gad.275685.115

About the Babraham Institute

The Babraham Institute, which receives strategic funding (a total of £27.3M in 2014-15) from the Biotechnology and Biological Sciences Research Council (BBSRC), undertakes international quality life sciences research to generate new knowledge of biological mechanisms underpinning ageing, development and the maintenance of health. The Institute’s research provides greater understanding of the biological events that underlie the normal functions of cells and the implication of failure or abnormalities in these processes. Research focuses on signalling and genome regulation, particularly the interplay between the two and how epigenetic signals can influence important physiological adaptations during the lifespan of an organism. By determining how the body reacts to dietary and environmental stimuli and manages microbial and viral interactions, we aim to improve wellbeing and healthier ageing.


BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, BBSRC invested over £509M in world-class bioscience in 2014-15. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

More information about BBSRC, our science and our impact.
More information about BBSRC strategically funded institutes.

Header image copyright: Engineering at Cambridge on Flickr by CC 2.0

External contact

Knowledge Exchange and Commercialisation Office, Babraham Institute

01223 496260

Tags: stem cells DNA genetics The Babraham Institute development press release